Evaluating Absolute Value Functions

The absolute value of a real number x is defined by the following:

$$|x| = x \text{ if } x \ge 0$$

-x if $x \le 0$

1) ENTER

Note that the effect of taking the absolute value of a number is to strip away the minus sign if the number is negative and to leave the number unchanged if it is nonnegative. Thus, $|x| \ge 0$ for all values of x.

Z -1	Evaluate $ -2 + 7 $. Evaluate $ -2 + 7 $.	1-2+71 1-21+171 5	-2 + 7 = 5, -2 + 7 = 9
	CL	9	$\rightarrow -2+7 \neq -2 + 7 .$
	1 _* 7 ENTER		

SHARP

Step & Key Operation

(When using EL-9650/9600c) *Use either pen touch or cursor to operate. Display (When using EL-9650/9600c) <u>Notes</u>

- **2-2** Is |x + y| = |x| + |y|? Think about this problem according to the cases when x or y are positive or negative.
 - If $x \ge 0$ and $y \ge 0$ |X+Y| = |2+7| = 9|X| + |V| = |2| + |7| = 9[e.g.; (x, y) = (2,7)] $\rightarrow |X + y| = |X| + |y|.$ If $x \le 0$ and $y \ge 0$ |X+Y| = |-2 + 7| = 5[e.g.; (x, y) = (-2, 7)]|X| + |Y| = |-2| + |7| = 9 $\rightarrow |x+y| \neq |x| + |y|.$ If $x \ge 0$ and $y \le 0$ |X+Y| = |2-7| = 5[e.g.; (x, y) = (2, -7)]|X| + |Y| = |2| + |-7| = 9 $\Rightarrow |X + Y| \neq |X| + |Y|.$ If $x \le 0$ and $y \le 0$ |X+y| = |-2-7| = 9[e.g.; (x, y) = (-2, -7)] |X| + |Y| = |-2| + |-7| = 9 $\rightarrow |X + Y| = |X| + |Y|.$

Therefore |x+y| = |x| + |y| when $x \ge 0$ and $y \ge 0$, and when $x \le 0$ and $y \le 0$.

3-1 Evaluate $\left|\frac{6-9}{1+3}\right|$. Evaluate $\frac{|6-9|}{|1+3|}$. $\left|\frac{6-9}{1+3}\right| = 0.75$, $\frac{|6-9|}{|1+3|} = 0.75$ 1+3 16-91 $\rightarrow \left| \frac{6 \cdot 9}{1 + 3} \right| = \frac{|6 \cdot 9|}{|1 + 3|}$ 11+31 CL MATH 1 a/b 6 9 3 ENTER ► 1 + 9 a/b MATH 1 6 MATH 1 1 3 ENTER + 3.2 Is |X/y| = |X|/|y|? Think about this problem according to the cases when x or y are positive or negative. If $x \ge 0$ and $y \ge 0$ |X/Y| = |2/7| = 2/7[e.g.; (x, y) = (2,7)]|X|/|Y| = |2|/|7| = 2/7 $\rightarrow |X/Y| = |X|/|Y|$ If $x \le 0$ and $y \ge 0$ |X/Y| = |(-2)/7| = 2/7[e.g.; (x, y) = (-2, 7)]|X|/|Y| = |-2|/|7| = 2/7 $\rightarrow |X/Y| = |X|/|Y|$ If $x \ge 0$ and $y \le 0$ |X/Y| = |2/(-7)| = 2/7[e.g.; (x, y) = (2, -7)]|X|/|Y| = |2|/|-7| = 2/7 $\rightarrow |X/Y| = |X|/|Y|$ If $x \le 0$ and $y \le 0$ |X/Y| = |(-2)/-7| = 2/7[e.g.; (x, y) = (-2, -7)] |x|/|y| = |-2|/|-7| = 2/7 $\rightarrow |X/Y| = |X|/|Y|$ The statement is true for all $y \neq 0$.

The EL-9650/9600c/9450/9400 shows absolute values with | |, just as written on paper, by using the Equation editor. The nature of arithmetic of the absolute value can be learned through arithmetical operations of absolute value functions.

SHARP