EL-9650/9600c/9450/9400 Graphing Calculator

Shifting a Graph of Quadratic Equations

A quadratic equation of *y* in terms of *x* can be expressed by the standard form $y = a (x - h)^2 + k$, where *a* is the coefficient of the second degree term $(y = ax^2 + bx + c)$ and (h, k) is the vertex of the parabola formed by the quadratic equation. An equation where the largest exponent on the independent variable *x* is 2 is considered a quadratic equation. In graphing quadratic equations on the calculator, let the *x*-variable be represented by the horizontal axis and let *y* be represented by the vertical axis. The relation of an equation and its graph can be seen by moving the graph and checking the coefficients of the equation.

<u>Example</u>

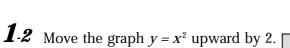
Move or pinch a graph of quadratic equation $y = x^2$ to verify the relation between the coefficients of the equation and the graph.

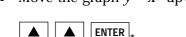
1. Shift the graph $y = x^2$ upward by 2.

2. Shift the graph $y = x^2$ to the right by 3.

3. Pinch the slope of the graph $y = x^2$.

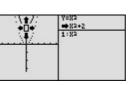
Before There may be differences in the results of calculations and graph plotting depending on the setting. **Starting** Return all settings to the default value and delete all data.




(When using EL-9650/9600c)

<u>Notes</u>

1-1 Access Shift feature and select the equation $y = x^2$.



2nd F SHIFT/CHANGE A

1

1:82

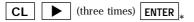
1-3 Save the new graph and observe the changes in the graph and the equation.

		 	_
ENTER	ALPHA		

Notice that upward movement of the basic $y = x^2$ graph by 2 units in the direction of the *y*axis means addition of 2 to the *y*-intercept. This demonstrates

that upward movement of the graph by *k* units means adding a *k* (>0) in the standard form $y = a(x - h)^2 + k$.

SHARP


Step & Key Operation (When using EL-9650/9600c) *Use either pen touch or cursor to operate.

Display (When using EL-9650/9600c)

• (X-3) 2


<u>Notes</u>

2-1 Move the graph $y = x^2$ to the right by 3.

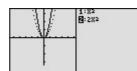
2-2 Save the new graph and observe the changes in the graph and the equation

ENTER ALPHA		▼
-------------	--	---

Notice that movement of the basic $y = x^2$ graph to the right by 3 units in the direction of the *x*-axis is equivalent to the addition of 3 to the *x*-intercept.

This demonstrates that movement of the graph to the right means adding an h (>0) in the standard form $y = a (x - h)^2 + k$ and movement to the left means subtracting an h (<0).

3-1 Access Change feature and select the equation $y = x^2$.


2nd F	SHIFT/CHANGE	B _*
1 *		

- ASHIFT BERANDE AY=X2 BY=IX BY=IX Y=EX Y=sin X BY=sin X BY=tan X
- **3-2** Pinch the slope of the graph.

う情	¥=82 ➡282
	1:%2
ŀ	

3-3 Save the new graph and observe the changes in the graph and the equation.

Notice that pinching or closing the basic $y = x^2$ graph is equivalent to increasing an a (>1) within the standard form $y = a (x - h)^2 + k$ and broadening the graph is equivalent to decreasing an a (<1).

The Shift/Change feature of the EL-9650/9600c/9450/9400 allows visual understanding of how graph changes affect the form of quadratic equations.

SHARP