Sharp Proves Ability of High-Density Plasmacluster lons^{*1} to Eliminate (in a 1-m³ box) Airborne Bacteria and Odors, as well as Inhibit Infectivity of Canine Parvovirus^{*2} in an Animal Hospital

Sharp Corporation, in cooperation with the Animal Clinical Research Foundation^{*3} (Yoshihisa Yamane, President; and Kazuaki Takashima, General Manager), has proved in an animal hospital that high-density Plasmacluster lons (ion concentration: 25,000 ions/cm³) reduce airborne bacteria and ammonia odors, which are the main causes of pet odors.

In addition, they proved that high-density Plasmacluster lons (ion concentration: 25,000 ions/cm³) can inhibit infectivity of airborne canine parvovirus (in a test using a 1-m³ box, which conducted by Shokukanken Inc.^{*4}).

Through these tests, it has been verified that high-density Plasmacluster lons can contribute to a healthy and pleasant living environment not only for pets but also for pet owners.

The results of these studies will be presented at *the 31st Annual Meeting of Japanese Society of Clinical Veterinary Medicine* starting on November 19, 2010.

Based on the academic marketing⁵, Sharp is working in collaboration with academic research organizations around the world since the year 2000, has proven that Plasmacluster technology is effective in inhibiting the activity of 29 different kinds of harmful microorganisms, including viruses, bacteria, and allergens. Furthermore, it has been proven safe to humans⁶. This time, Sharp has for the first time proved the multiple effect of Plasmacluster lons in the field of pet care, increasing further the value of the technology. Sharp will continue to further evolve and verify Plasmacluster technology for the creation of healthier living environments.

Comments by Yoshihisa Yamane, President, and Kazuaki Takashima, General Manager, of the Animal Clinical Research Foundation

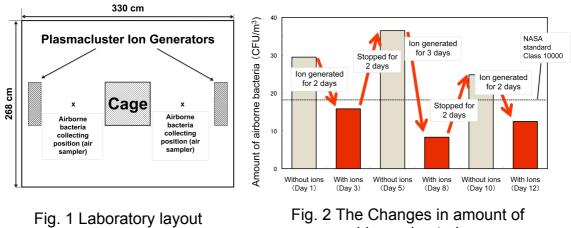
This time, the effect of Plasmacluster lons in reducing airborne bacteria and odors was tested in an area where dogs are kept (of an animal hospital). In the future, Plasmacluster technology is expected to be applied to improve the environment of places such as operating rooms and examination rooms of animal hospitals, indoor pet breeding, and, the health and amenity of pet owners.

Furthermore, since it has been confirmed that Plasmacluster technology can inhibit canine parvovirus infectivity, which is feared by animal health care worker, this technology is expected to be used for not only protecting dogs' lives but also for protecting veterinary institutions from the spread of infectious diseases.

- *1 Plasmacluster is a registered trademark of Sharp Corporation.
- *2 A virus contagious among pets. Infection can result in death.
- *3 A clinical research institute studying veterinary science.
- *4 A research institute studying food and the environment, including areas such as microbiological inspection, food ingredient analysis, and sanitary surveys.
- *5 A marketing technique where a product has its benefits scientifically verified in cooperation with top-of-the-line research facilities.
- *6 Testing conducted by Mitsubishi Chemical Medience Corporation, including tests for inhalation toxicity and for skin and eye irritancy and corrosivity.

1. Verification of effect of high-density Plasmacluster lons in reducing airborne bacteria and odors in veterinary hospitals

In the center of an 8.8-m² laboratory, a double-deck cage^{*7} was installed. Two beagles were placed in the cage, one on each deck, and ion generators were installed on opposite walls on either side of the cage (Fig. 1 and 3).


* 7 A breeder's loft for pet animals.

Evaluation item:	Amount of airborne bacteria (bacteria collected with
	an air sampler ^{**} was counted)
Methods:	Over a period of 12 days, the ion generators were
	turned on or off for two or three days at a time.
	During this time, the increase and decrease in the
	amount of airborne bacteria under each condition
	("with ions" or "without ions") were compared.
Results:	Under the "with ions" condition (ion concentration:
	25,000 ions/cm ³), the amount of bacteria always
	decreased compared to the "without ions" condition
	(Fig. 2). The "with ions" conditions all achieved class
	10,000 of the NASA Standard Assay *9 (amount of
	airborne bacteria is no more than 17.7 CFU/m ³). This
	is considered to be the acceptable level for general
	operating rooms.

Verification of Airborne Bacteria Reduction

*8 An apparatus that collects air for measuring the amount of airborne bacteria.

*9 A standard for the purity of air in biological clean rooms.

airborne bacteria

Verification of Decrease in Ammonia Concentration

Evaluation item:	Ammonia concentration in air (measured with a gas detector
	tube ^{*10})
Methods:	Plasmacluster lons were generated (ion concentration:
	25,000 ions/cm ³) in a room. During this time, the
	concentration of ammonia under each condition ("with ions"
	and "without ions") was compared.
Results:	Under the "without ions" condition, the ammonia
	concentration was 2.25 ppm. After ion generation started,
	the ammonia concentration gradually decreased, and after
	29 days, the ammonia concentration had dropped to 0.56
	ppm After 37 days, the ammonia concentration dropped to
	0.34 ppm. (Fig. 4). The odors decreased from a level
	corresponding to odor intensity 3 ("easily detectable" on the
	six-level odor intensity indication method ^{*11}) to less than a
	level corresponding to odor intensity 2 ("faint but
	identifiable").

- *10 An apparatus that measures the concentration of a specific substance in the air. For this test, an apparatus for measuring ammonia concentration was used.
- *11 A method commonly used in Japan for ranking odor intensity.

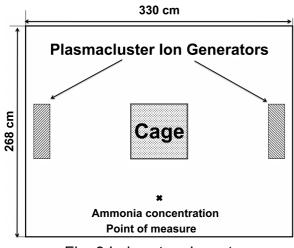
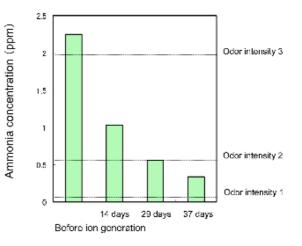



Fig. 3 Laboratory layout

Relation Between Ammonia Concentration and Six-Level Odor Intensity Indication Method

Ammonia	Odor	Description
concentration	intensity	
(ppm)		
40	5	Very strong odor
10	4	Strong odor
2	3	Easily recognizable odor
0.6	2	Recognizable slight odor
0.1	1	Barely sensed odor
—	0	No odor

2. Verification of Effect of High-Density Plasmacluster lons Effectiveness at Inhibiting Canine Parvovirus in a 1-m³ box

Evaluation Item:	Infectivity of canine parvovirus (as per TCID50 assay *12)
Test environment:	Plasmacluster Ion generator was placed in a 1-m ³ box, and
	ions were generated (ion concentration: 25,000 ions/cm ³).
Methods:	Canine parvovirus was sprayed in the box, and the
	conditions of "without ions" and "with ions" (after ion
	generation for five minutes) were compared for infectivity of
	the virus.
Results:	Compared to the "without ions" condition, infectivity of the
	virus was reduced by at least 99.8% for the "with ions"
	condition.

*12 An assay to check infectivity by inoculating a cell with the virus in the form of a virus solution that has been diluted in stages.

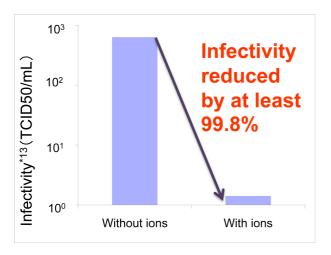


Fig. 5 The change in airborne canine parvovirus infectivity

*13 Value showing infectivity of virus cells; calculated using the TCID50 assay.

Animal Clinical Research Foundation

Established on April 1, 1991, the Foundation conducts clinical research into veterinary medicine. Other wide-ranging activities include publication of books on veterinary medicine, provision of information on academic conferences and lectures, human resource development including education and training of veterinary care staffs, and protection of natural resources through wild animal preservation management. Since 1996, the Foundation has also sponsored the *Annual Meeting of Japanese Society of Clinical Veterinary Medicine*, an event that is registered with the Science Council of Japan.

Yoshihisa Yamane, DVM, PhD, President of Animal Clinical Research Foundation

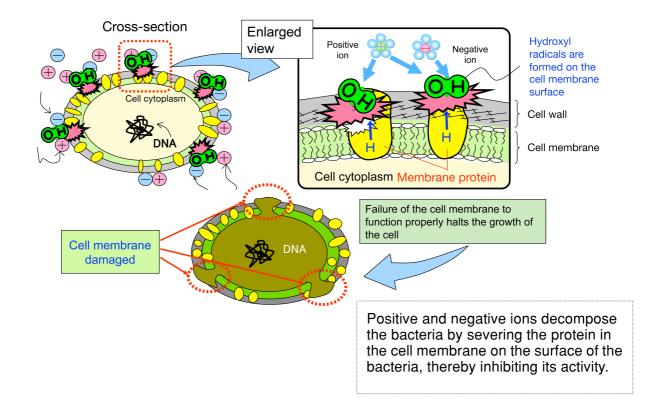
President of the Japan Veterinary Medical Association and Professor Emeritus.of Agriculture and Technology at Tokyo University. He created an ultra-compact artificial cardiopulmonary unit for animals in 1989 for the first time in the world and reported a successful operation with cardiopulmonary bypass, and is an authority on circulatory system in veterinary medicine. He became General Manager of Animal Clinical Research Foundation in 1991 and President of the foundation in 1996. In 2004, he became President of the Japan Veterinary Medical Association.

Kazuaki Takashima, DVM, PhD, General Manager of Animal Clinical Research Foundation

Director of the Japanese Society of Clinical Veterinary Medicine and General Director of Kurayoshi Animal Medical Center and Yonago Animal Medical Center.

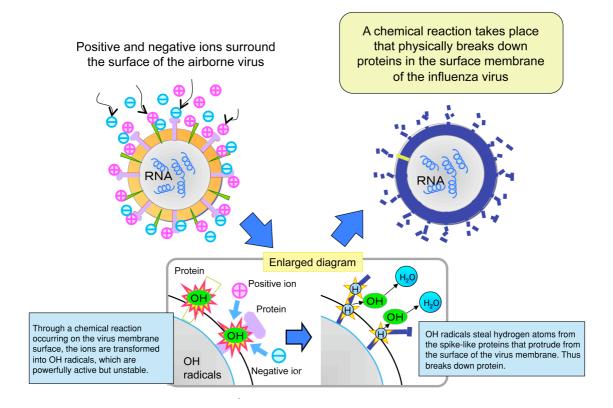
Efficacy of Plasmacluster Technology in Inhibiting Virus Infectivity

Viruses	Tests/Results	Testing & Verification Organization	Outline
H1N1 human influenzavirus	 Tested in a 1-m³ box Exposed time: 25 min. Reduced by 99.7% 	Kitasato Research Center of Environmental Sciences, Japan Seoul University, Korea Shanghai Municipal Center for Disease Control and Prevention, China Kitasato Institute Medical Center Hospital, Japan	Pathogen virus of influenza infected to person
H5N1 avian influenzavirus	 Tested in a 1-m³ box Exposed time: 10 min. Reduced by 99.0% 	Retroscreen Virology, Ltd., London, U.K.	Highly pathogenic avian influenza virus gathered from person
Feline coronavirus	 Tested in a 1-m³ box Exposed time: 35 min. Reduced by 99.7% 	Kitasato Institute Medical Center Hospital, Japan	Pathogen virus of feline infections peritonitis virus. Same type of virus with SARS virus
Coxsackievirus	 Tested in one-pass Exposed time: 3.3 sec. Reduced by 98.9% 	Kitasato Research Center of Environmental Sciences, Japan	Pathogen virus of summer cold
Poliovirus	 Tested in one-pass Exposed time: 3.3 sec. Reduced by 98.9% 	Kitasato Research Center of Environmental Sciences, Japan	Pathogen virus of infantile paralysis
SARS virus	 Tested in one-pass Exposed time: 3.3 sec. Reduced by 73.4% 	Retroscreen Virology, Ltd., London, U.K.	Pathogen virus of SARS
Canine parvovirus	 Tested in a 1-m³ box Exposed time: 5 min. Reduced by 99.8% 	Shokukanken Inc., Japan	A highly infectious virus that can cause death in dogs. Cause of sudden death and narcolepsy of the dogs

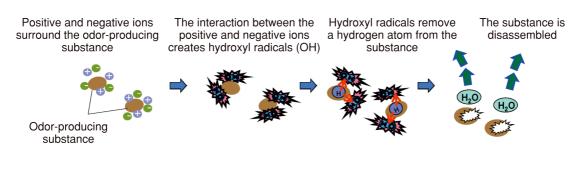

Efficacy of Plasmacluster lons in Inhibiting Activity of Various Pathogens Confirmed Through Collaborative Research

Target Substance	Species	Testing & Verification Organization
	Serratia	Harvard School of Public Health (Dr. Melvin W. First, Professor Emeritus), U.S.
	Escherichia coli (E. coli)	Ishikawa Health Service Association, Japan
	E. coli, Staphylococcus albus, Candida	Shanghai Municipal Center for Disease Control and Prevention, China
	Bacillus subtilis	Kitasato Research Center of Environmental Sciences, Japan
	Dacinus Sublins	CT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
Bacteria	MRSA (methicillin-resistant Staphylococcus aureus)	Kitasato Research Center of Environmental Sciences, Japan
	Staphylococcus aureus)	Kitasato Institute Medical Center Hospital, Japan
	MDRP (multi-drug resistant Pseudomonas aeruginosa)	Kitasato Institute Medical Center Hospital, Japan
	Pseudomonas, Enterococcus, Staphylococcus	University of Lübeck, Germany
	Enterococcus, Staphylococcus, Sarcina, Micrococcus	CT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
	Mite allergens, pollen	Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan
Allergens	Mite allergens	Osaka City University Medical School's Department of Biochemistry & Molecular Pathology, Japan

FungiIshikawa Health Service Association, JapanFungiCladosporiumUniversity of Lübeck, Germany (growth-suppressing effect)FungiPenicillium, AspergillusCT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), GermanyFungiPenicillium, AspergillusUniversity of Lübeck, Germany (growth-suppressing effect)Aspergillus, Penicillium (two species), Stachybotrys, Alternaria, MucoralesCT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), GermanyKitasato Research Center of EnvironmentalKitasato Research Center of Environmental
FungiCladosporium(growth-suppressing effect)FungiPenicillium, AspergillusCT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), GermanyPenicillium, Aspergillus, Penicillium (two species), Stachybotrys, Alternaria, MucoralesUniversity of Lübeck, Germany (growth-suppressing effect)CT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
FungiUniversity of Applied Sciences), GermanyFungiPenicillium, AspergillusUniversity of Lübeck, Germany (growth-suppressing effect)Aspergillus, Penicillium (two species), Stachybotrys, Alternaria, MucoralesCT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
Penicilium, Aspergilius (growth-suppressing effect) Aspergillus, Penicillium (two species), Stachybotrys, CT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany Mucorales CT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
Penicillium (two species), Stachybotrys, Alternaria, MucoralesCT&T (Professor Gerhard Artmann, Aachen University of Applied Sciences), Germany
Kitasato Research Center of Environmental
Sciences, Japan
H1N1 human influenzavirus
Shanghai Municipal Center for Disease Control and Prevention, China
Kitasato Institute Medical Center Hospital, Japan
H5N1 avian influenzavirus Retroscreen Virology, Ltd., London, U.K.
Viruses New-type H1N1 influenzavirus Retroscreen Virology, Ltd., London, U.K.
SARS virus Retroscreen Virology, Ltd., London, U.K.
Poliovirus Kitasato Research Center of Environmental Sciences, Japan
Kitasato Research Center of Environmental
Coxsackievirus Sciences, Japan
Coxsackievirus Sciences, Japan Kitasato Institute Medical Center Hospital, Japan


Overview of Plasmacluster Technology

Sharp's proprietary air purification technology in which positive ions $[H^+(H_2O)_n]]$ and negative ions $[O_2^-(H_2O)_m]$ are released into the air simultaneously. These positive and negative ions instantly recombine on the surface of bacteria, mold fungus, viruses and allergens floating in the air to form hydroxyl (OH) radicals, which have extremely high oxidation ability, and this chemical reaction decomposes proteins on the surface of bacteria and other pathogens, thereby inhibiting their activity.



Mechanism by which Bacteria are Inactivated (image)

Working Mechanism to Inhibit Infection by Airborne Viruses

Presumed Mechanism by which Odor is Effectively Suppressed (image)

